Time (in)consistency of multistage distributionally robust inventory models with moment constraints

نویسندگان

چکیده

Recently, there has been a growing interest in developing inventory control policies which are robust to model misspecification. One approach is posit that nature selects worst-case distribution for any relevant stochastic primitives from some pre-specified family. Several communities have observed subtle phenomena known as time inconsistency can arise this framework. In particular, it becomes possible policy optimal at zero may not be the associated optimization problem decision-maker recomputes her each point time, implications implementability. If exists both formulations, we say consistent, and weakly consistent. every strongly We study these context of managing an over when only mean, variance, support demand stage. provide several illustrative examples showing here question consistency quite subtle. complement observations by providing simple sufficient conditions weak strong consistency. Although similar was previously identified Shapiro setting mean known, our rich enough exhibit variety additional interesting behaviors.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time (in)consistency of multistage distributionally robust inventory models with moment constraints

Recently, there has been a growing interest in developing inventory control policies which are robust to model misspecification. One approach is to posit that nature selects a worst-case distribution for any relevant stochastic primitives from some pre-specified family. Several communities have observed that a subtle phenomena known as time inconsistency can arise in this framework. In particul...

متن کامل

Distributionally Robust Reward-Risk Ratio Optimization with Moment Constraints

Reward-risk ratio optimization is an important mathematical approach in finance. We revisit the model by considering a situation where an investor does not have complete information on the distribution of the underlying uncertainty and consequently a robust action is taken to mitigate the risk arising from ambiguity of the true distribution. We consider a distributionally robust reward-risk rat...

متن کامل

Quantitative Stability Analysis for Distributionally Robust Optimization with Moment Constraints

In this paper we consider a broad class of distributionally robust optimization (DRO for short) problems where the probability of the underlying random variables depends on the decision variables and the ambiguity set is defined through parametric moment conditions with generic cone constraints. Under some moderate conditions including Slater type conditions of cone constrained moment system an...

متن کامل

Distributionally Robust Optimization with Matrix Moment Constraints: Lagrange Duality and Cutting Plane Methods1

A key step in solving minimax distributionally robust optimization (DRO) problems is to reformulate the inner maximization w.r.t. probability measure as a semiinfinite programming problem through Lagrange dual. Slater type conditions have been widely used for zero dual gap when the ambiguity set is defined through moments. In this paper, we investigate effective ways for verifying the Slater ty...

متن کامل

Calibration of Distributionally Robust Empirical Optimization Models

JUN-YA GOTOH, MICHAEL JONG KIM, AND ANDREW E.B. LIM Department of Industrial and Systems Engineering, Chuo University, Tokyo, Japan. Email: [email protected] Sauder School of Business, University of British Columbia, Vancouver, Canada. Email: [email protected] Departments of Decision Sciences and Finance, NUS Business School, National University of Singapore, Singapore. Email: andr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Operational Research

سال: 2021

ISSN: ['1872-6860', '0377-2217']

DOI: https://doi.org/10.1016/j.ejor.2020.07.041